Source: cs.RO updates on arXiv.org
arXiv:2506.15788v1 Announce Type: new
Abstract: Modern two and four legged robots exhibit impressive mobility on complex terrain, largely attributed to advancement in learning algorithms. However, these systems often rely on high-bandwidth sensing and onboard computation to perceive/respond to terrain uncertainties. Further, current locomotion strategies typically require extensive robot-specific training, limiting their generalizability across platforms. Building on our prior research connecting robot-environment interaction and communication theory, we develop a new paradigm to construct robust and simply controlled multi-legged elongate robots (MERs) capable of operating effectively in cluttered, unstructured environments. In this framework, each leg-ground contact is thought of as a basic active contact (bac), akin to bits in signal transmission. Reliable locomotion can be achieved in open-loop on “noisy” landscapes via sufficient redundancy in bacs. In such situations, robustness is achieved through passive mechanical responses. We term such processes as those displaying mechanical intelligence (MI) and analogize these processes to forward error correction (FEC) in signal transmission. To augment MI, we develop feedback control schemes, which we refer to as computational intelligence (CI) and such processes analogize automatic repeat request (ARQ) in signal transmission. Integration of these analogies between locomotion and communication theory allow analysis, design, and prediction of embodied intelligence control schemes (integrating MI and CI) in MERs, showing effective and reliable performance (approximately half body lengths per cycle) on complex landscapes with terrain “noise” over twice the robot’s height. Our work provides a foundation for systematic development of MER control, paving the way for terrain-agnostic, agile, and resilient robotic systems capable of operating in extreme environments.
Abstract: Modern two and four legged robots exhibit impressive mobility on complex terrain, largely attributed to advancement in learning algorithms. However, these systems often rely on high-bandwidth sensing and onboard computation to perceive/respond to terrain uncertainties. Further, current locomotion strategies typically require extensive robot-specific training, limiting their generalizability across platforms. Building on our prior research connecting robot-environment interaction and communication theory, we develop a new paradigm to construct robust and simply controlled multi-legged elongate robots (MERs) capable of operating effectively in cluttered, unstructured environments. In this framework, each leg-ground contact is thought of as a basic active contact (bac), akin to bits in signal transmission. Reliable locomotion can be achieved in open-loop on “noisy” landscapes via sufficient redundancy in bacs. In such situations, robustness is achieved through passive mechanical responses. We term such processes as those displaying mechanical intelligence (MI) and analogize these processes to forward error correction (FEC) in signal transmission. To augment MI, we develop feedback control schemes, which we refer to as computational intelligence (CI) and such processes analogize automatic repeat request (ARQ) in signal transmission. Integration of these analogies between locomotion and communication theory allow analysis, design, and prediction of embodied intelligence control schemes (integrating MI and CI) in MERs, showing effective and reliable performance (approximately half body lengths per cycle) on complex landscapes with terrain “noise” over twice the robot’s height. Our work provides a foundation for systematic development of MER control, paving the way for terrain-agnostic, agile, and resilient robotic systems capable of operating in extreme environments.
Support authors and subscribe to content
This is premium stuff. Subscribe to read the entire article.
Login if you have purchased