Steering Your Diffusion Policy with Latent Space Reinforcement Learning

Source: cs.RO updates on arXiv.org

RELATED POSTS

arXiv:2506.15799v1 Announce Type: new
Abstract: Robotic control policies learned from human demonstrations have achieved impressive results in many real-world applications. However, in scenarios where initial performance is not satisfactory, as is often the case in novel open-world settings, such behavioral cloning (BC)-learned policies typically require collecting additional human demonstrations to further improve their behavior — an expensive and time-consuming process. In contrast, reinforcement learning (RL) holds the promise of enabling autonomous online policy improvement, but often falls short of achieving this due to the large number of samples it typically requires. In this work we take steps towards enabling fast autonomous adaptation of BC-trained policies via efficient real-world RL. Focusing in particular on diffusion policies — a state-of-the-art BC methodology — we propose diffusion steering via reinforcement learning (DSRL): adapting the BC policy by running RL over its latent-noise space. We show that DSRL is highly sample efficient, requires only black-box access to the BC policy, and enables effective real-world autonomous policy improvement. Furthermore, DSRL avoids many of the challenges associated with finetuning diffusion policies, obviating the need to modify the weights of the base policy at all. We demonstrate DSRL on simulated benchmarks, real-world robotic tasks, and for adapting pretrained generalist policies, illustrating its sample efficiency and effective performance at real-world policy improvement.

Read the full article »

Support authors and subscribe to content

This is premium stuff. Subscribe to read the entire article.

Subscribe

Gain access to all our Premium contents.
More than 100+ articles.

Buy Article

Unlock this article and gain permanent access to read it.

Related Posts

Next Post

Recommended Stories

Welcome Back!

Login to your account below

Retrieve your password

Please enter your username or email address to reset your password.

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?